Partial Euler Products as a New Approach to Riemann Hypothesis

نویسنده

  • JEAN-PAUL JURZAK
چکیده

Abstract. In this paper, we show that Riemann hypothesis (concerning zeros of the zeta function in the critical strip) is equivalent to the analytic continuation of Euler products obtained by restricting the Euler zeta product to suitable subsets Mk, k ≥ 1 of the set of prime numbers. Each of these Euler product defines so a partial zeta function ζk(s) equal to a Dirichlet series of the form ∑ ǫ(n)/n, with coefficients ǫ(n) equal to 0 or 1 as n belongs or not to the population of integers generated by Mk. We show that usual formulas of the arithmetic adapt themselves to such populations (Moebius, Mertens, Lambert series,...). We envisage also the study of summations inside these populations and new functions (generalizations of the integer part function, of the harmonic series) directly connected to the existence of analytical continuations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial Euler Products on the Critical Line

The initial version of the Birch and Swinnerton-Dyer conjecture concerned asymptotics for partial Euler products for an elliptic curve L-function at s = 1. Goldfeld later proved that these asymptotics imply the Riemann hypothesis for the L-function and that the constant in the asymptotics has an unexpected factor of √ 2. We extend Goldfeld’s theorem to an analysis of partial Euler products for ...

متن کامل

A new fractional sub-equation method for solving the space-time fractional differential equations in mathematical physics

In this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (FPDEs) in the sense of modified Riemann-Liouville derivative. With the aid of symbolic computation, we choose the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation in mathematical physics with a source to illustrate the validity a...

متن کامل

Finite Euler Products and the Riemann Hypothesis

Abstract. We show that if the Riemann Hypothesis is true, then in a region containing most of the right-half of the critical strip, the Riemann zeta-function is well approximated by short truncations of its Euler product. Conversely, if the approximation by products is good in this region, the zeta-function has at most finitely many zeros in it. We then construct a parameterized family of non-a...

متن کامل

New operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative

In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...

متن کامل

On the mean values of L-functions in orthogonal and symplectic families

Hybrid Euler-Hadamard products have previously been studied for the Riemann zeta function on its critical line and for Dirichlet Lfunctions in the context of the calculation of moments and connections with Random Matrix Theory. According to the Katz-Sarnak classification, these are believed to represent families of L-function with unitary symmetry. We here extend the formalism to families with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002